- عضویت
- 9/8/18
- ارسال ها
- 1,639
- امتیاز واکنش
- 12,858
- امتیاز
- 373
- سن
- 21
- محل سکونت
- Ahvaz
- زمان حضور
- 9 روز 3 دقیقه
نویسنده این موضوع
معادله دیفرانسیل
معادله دیفرانسیل یکی از معادله های ریاضی است و بیانگر یک تابع مجهول از یک یا چند متغیر مستقل و مشتقهای مرتبههای مختلف آن نسبت به متغیرهای مستقل است. بسیاری از قوانین عمومی طبیعت (در فیزیک، شیمی، زیستشناسی و ستارهشناسی) طبیعیترین بیان ریاضی خود را در زبان معادلات دیفرانسیل مییابند. کاربردهای معادلات دیفرانسیل همچنین در ریاضیات، بویژه در هندسه و نیز در مهندسی و بسیاری از حوزه های دیگر کاربردی و فنی فراوان هستند.
معادلات دیفرانسیل در بسیاری پدیدههای علوم رخ می دهند. هر زمان که یک رابـ*ـطه بین چند متغیر با مقادیر مختلف در حالتها یا زمانهای مختلف وجود دارد و نرخ تغییرات متغیرها در زمانهای مختلف یا حالات مختلف شناخته شده است میتوان آن پدیده را با معادلات دیفرانسیل بیان کرد.
به عنوان مثال در مکانیک، حرکت جسم بـ*ـو*سیله سرعت و مکان آن در زمانهای مختلف توصیف میشود و معادلات نیوتن به ما رابـ*ـطه بین مکان و سرعت و شتاب و نیروهای گوناگون وارده بر جسم را میدهد. در چنین شرایطی می توانیم حرکت جسم را در قالب یک معادله دیفرانسیل که در آن مکان ناشناخته جسم تابعی از زمان است بیان کنیم.
شاخه بندی
متدهای حل معادلات دیفرانسیل بسیار مرتبط با نوع معادله هستند. معادلات دیفرانسیل را به طور کلی به دو دسته می توان تقسیم کرد.
معادلات دیفرانسیل معمولی: در این نوع معادلات تابع جواب دارای تنها یک متغیر مستقل است.
معادلات دیفرانسیل با مشتقات پارهای: در این نوع معادلات تابع جواب دارای چندین متغیر مستقل میباشد.
هر دو نوع این معادلات را می توان از دیدگاه خطی یا غیر خطی بودن تابع جواب هم دسته بندی کرد. همچنین مرتبه معادلات دیفرانسیل معمولی و مشتقات پاره ای را می توان به صورت کسری در نظر گرفت که به معادلات دیفرانسیل کسری مشهورند. این نوع از معادلات دیفرانسیل نیز روش های حل گوناگونی دارند که می توان به روش تجزیه آدومیان، هوموتوپی و تکرار تغییرات اشاره نمود.
معادله دیفرانسیل یکی از معادله های ریاضی است و بیانگر یک تابع مجهول از یک یا چند متغیر مستقل و مشتقهای مرتبههای مختلف آن نسبت به متغیرهای مستقل است. بسیاری از قوانین عمومی طبیعت (در فیزیک، شیمی، زیستشناسی و ستارهشناسی) طبیعیترین بیان ریاضی خود را در زبان معادلات دیفرانسیل مییابند. کاربردهای معادلات دیفرانسیل همچنین در ریاضیات، بویژه در هندسه و نیز در مهندسی و بسیاری از حوزه های دیگر کاربردی و فنی فراوان هستند.
معادلات دیفرانسیل در بسیاری پدیدههای علوم رخ می دهند. هر زمان که یک رابـ*ـطه بین چند متغیر با مقادیر مختلف در حالتها یا زمانهای مختلف وجود دارد و نرخ تغییرات متغیرها در زمانهای مختلف یا حالات مختلف شناخته شده است میتوان آن پدیده را با معادلات دیفرانسیل بیان کرد.
به عنوان مثال در مکانیک، حرکت جسم بـ*ـو*سیله سرعت و مکان آن در زمانهای مختلف توصیف میشود و معادلات نیوتن به ما رابـ*ـطه بین مکان و سرعت و شتاب و نیروهای گوناگون وارده بر جسم را میدهد. در چنین شرایطی می توانیم حرکت جسم را در قالب یک معادله دیفرانسیل که در آن مکان ناشناخته جسم تابعی از زمان است بیان کنیم.
شاخه بندی
متدهای حل معادلات دیفرانسیل بسیار مرتبط با نوع معادله هستند. معادلات دیفرانسیل را به طور کلی به دو دسته می توان تقسیم کرد.
معادلات دیفرانسیل معمولی: در این نوع معادلات تابع جواب دارای تنها یک متغیر مستقل است.
معادلات دیفرانسیل با مشتقات پارهای: در این نوع معادلات تابع جواب دارای چندین متغیر مستقل میباشد.
هر دو نوع این معادلات را می توان از دیدگاه خطی یا غیر خطی بودن تابع جواب هم دسته بندی کرد. همچنین مرتبه معادلات دیفرانسیل معمولی و مشتقات پاره ای را می توان به صورت کسری در نظر گرفت که به معادلات دیفرانسیل کسری مشهورند. این نوع از معادلات دیفرانسیل نیز روش های حل گوناگونی دارند که می توان به روش تجزیه آدومیان، هوموتوپی و تکرار تغییرات اشاره نمود.
معادله دیفرانسیل
رمان ۹۸ | دانلود رمان
نودهشتیا,بزرگترین مرجع تایپ رمان, دانلود رمان جدید,دانلود رمان عاشقانه, رمان خارجی, رمان ایرانی, دانلود رمان بدون سانسور,دانلود رمان اربابی,
roman98.com